首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2021篇
  免费   151篇
  国内免费   382篇
化学   1574篇
晶体学   23篇
力学   24篇
综合类   2篇
数学   4篇
物理学   927篇
  2024年   10篇
  2023年   101篇
  2022年   102篇
  2021年   87篇
  2020年   157篇
  2019年   124篇
  2018年   133篇
  2017年   183篇
  2016年   183篇
  2015年   175篇
  2014年   197篇
  2013年   181篇
  2012年   193篇
  2011年   185篇
  2010年   89篇
  2009年   74篇
  2008年   48篇
  2007年   47篇
  2006年   53篇
  2005年   21篇
  2004年   26篇
  2003年   22篇
  2002年   17篇
  2001年   13篇
  2000年   12篇
  1999年   13篇
  1998年   21篇
  1997年   8篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   14篇
  1991年   5篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1979年   1篇
  1971年   1篇
排序方式: 共有2554条查询结果,搜索用时 140 毫秒
11.
The graphene family of nanomaterials (GFN) have a common carbon lattice base structure but represent a diverse range of materials with distinct chemical and physical characteristics. These characteristics are determined by the fabrication method and impart each material with specific chemical properties which govern interaction with cells and biomolecules, and physical properties that give unique nanotopography, stiffness, and electrical properties. Remarkably, members of the GFN have been shown to promote tissue formation and influence cell differentiation in a variety of tissue types, including neural, bone, and cardiac muscle, making them of high interest to the biomedical field. The diverse range of materials and experimental setups in the literature make uncovering the mechanism of action challenging. Nevertheless, it is becoming clear that the ability of GFN to form non-covalent interactions (π-π, hydrogen bonding, electrostatic) with biomolecules may increase their bioavailability via sequestering/concentration/conformation protection to induce cell differentiation. In addition to the chemical properties, the stimulation of mechanosensing pathways, cytoskeletal rearrangement, and enhanced electrical activity of cells on GFN substrates demonstrates the importance of the physical properties in directing cell differentiation. The understanding of the mechanism behind the ability of GFN to enhance cell differentiation will allow the design and selection of materials with the desired properties for tissue repair and regeneration.  相似文献   
12.
13.
《Physics letters. A》2020,384(19):126402
As the key factor for designing the valleytronic devices is to well understand the valley-dependent transport mechanism in graphene, we investigate, in this work, the effect of two ferromagnetic (FM) metal stripes on the valley polarization in a graphene nanostructure with a strain. The nearly 100% valley polarization is observed at certain energy windows and it can be easily controlled through changing the width and the position of the FM stripe as well as the strength of the magnetic field induced by the FM stripe. Our interesting findings reveal the valley-dependent transport mechanism of electrons and promote the realization of the new types of valleytronic devices modulated by the FM stripe and the strain.  相似文献   
14.
氧化石墨烯薄片(GOSs)作为一种新型的二维片状材料,具有较高的比表面积、丰富的表面含氧官能团以及良好的光热稳定性。而稀土配合物通过无机稀土元素与有机配体的结合表现出优异的荧光特性。为了将两类材料具有的物化特性结合起来应用于紫外光谱探测领域。选取了合适的有机配体啉菲罗啉(1,10-邻二氮杂菲,phen)、2’2-联嘧啶(bpm)作为桥联分子,把氧化石墨烯(GOSs)与稀土配合物通过氢键自组装作用进行复合,制备了高效稳定可调的GOSs-稀土配合物复合荧光材料GOSs-Eu(BA)3phen和GOSs-Eu(TTA)3bpm,并且制备了相应的聚乙烯醇(PVA)共混紫外增强薄膜,对其光谱特性与稳定性进行了深入的研究。采用红外光谱、扫描电镜和金相显微镜等方法,对紫外增强材料进行了性能表征。采用吸收光谱,荧光光谱等方法,对紫外增强薄膜进行了性能表征。此外,通过热重测试(TGA)表征了GOSs氢键复合前后紫外增强材料的热稳定性,通过荧光强度-紫外光照次数表征了GOSs氢键复合前后紫外增强薄膜的光稳定性。红外光谱分析发现,进行配位前后有机配体的特征峰产生了频移,表明稀土配合物中Eu 3+与配体之间存在着明显的配位作用。在进行复合之后,桥联配体的特征峰也产生了偏移,表明GOSs与稀土配合物通过桥联分子的氢键作用进行了进行复合。吸收光谱与荧光光谱测定结果表明增强薄膜吸收峰在200~400 nm,荧光主峰在612 nm左右,为Eu 3+特征红色荧光峰,且不同配体可以实现不同范围的吸收产生差异化的荧光表现。扫描电镜和金相显微镜清晰地展示了稀土配合物复合前后的微观形貌,即颗粒状稀土配合物附着在石墨烯薄片上。光稳定性测试表明经过GOSs氢键复合之后,Eu(BA)3phen和Eu(TTA)3bpm稀土配合物荧光材料在进行25次荧光强度测试后光漂白程度分别下降了4.26%和6.41%,提高了其光稳定性。热重测试也表明在经过GOSs氢键复合之后,稀土配合物的热稳定性有了很大提高。总之,得益于GOSs和稀土配合物的特性结合,所制备的紫外增强材料表现出优异的荧光特性与稳定性,必将在紫外探测方面有着广阔的应用前景。  相似文献   
15.
Ultrasonic-assisted electrodeposition was used to fabricate the nickel/graphene oxide composite coatings with high hardness, low friction coefficient, and high wear resistance. In the present study, the effects of ultrasonic power and concentration of graphene oxide on the mechanical and tribological properties of the electrodeposited nickel/graphene oxide composite coatings were systematically studied. X-ray diffraction (XRD) analyses showed that the crystallite size of the nickel decreased with an increase of ultrasonic power (0–50 W, 40 KHz, square wave) and concentration of graphene oxide (0.1–0.4 g/L). Morphologies of the surface and cross-section of the composite coatings observed by Scanning Electron Microscopy (SEM) confirmed the existence of graphene oxide particles in the nickel matrix. The results from microhardness measurement demonstrated that the hardness was increased by 1.8 times using 50 W ultrasonic-assisted electrodeposition with the fixed concentration of graphene oxide (0.1 g/L), compared to the pure nickel coating. The hardness was increased by 4.4 times for the 0.4 g/L graphene oxide with the optimized ultrasonic power of 50 W in comparison to the pure nickel coating. Meanwhile, the friction coefficient decreased gradually with an increase in ultrasonic power and concentration of graphene oxide, respectively, where the effect of the concentration of graphene oxide played a more important role.  相似文献   
16.
Nanoscaled palladium particles supported on graphitic carbon nitride (Pd0/g-C3N4) is prepared to improve the oxygen transfer in Wacker oxidation via chemical reduction method. From the analysis of FT-IR, XRD, SEM, TEM, XPS and ICP, Pd0 particles are firmly combined with g-C3N4 layers, and sub-surface ones occupy most of the components. It is worth mentioning that graphene oxide (GO), which is completely recyclable without further pollution, can be used as a ‘solid weak acid’ taking the place of H2SO4 and CF3COOH. Under the optimization conditions, as many as 46 kinds of olefins are transferred into corresponding products with satisfactory yields, and o-methyl styrene gets the highest yield of 94%. After five times of recycling experiment, the yield of acetophenone only decreases by about 7.0% in the uniform reaction process. In virtue of former research results and molecular electrostatic potential, a possible mechanism is put forward to explain the catalytic process.  相似文献   
17.
Graphene Oxide (GO)- Polyacrylamide composites prepared between 5 and 50 μl GO were performed by Fluorescence Spectroscopy. The phase transition performed on the composites was measured by calculating the critical exponents, β and γ, respectively. In addition, fractal analysis of the composites was calculated by a fluorescence intensity of 427 nm. The geometrical distribution of GO in the composites was calculated based on the power law exponent values using scaling models. While the gelation proceeded GO plates first organized themselves into a 3D percolation cluster with the fractal dimension (Df) of the composite, Df = 2.63, then After it goes to diffusion limited clusters with Df = 1.4, its dimension lines up to a Von Koch curve with a random interval of Df = 1.14.  相似文献   
18.
Development of biocompatible porous supports is a promising strategy in the field of tissue engineering for the repair and regeneration of bone tissues with severe damage. Graphene oxide aerogels (GOAs) are excellent candidates for the manufacture of these systems due to their porosity, ability to imitate bone structure, and mechanical resistance, and according to their surface chemical reactivity, they can facilitate osseointegration, osteogenesis, osteoinduction and osteoconduction. In this review, synthesis of GOAs from the most primary source is described, and recent studies on the use of these functionalized carbonaceous foams as scaffolding for bone tissue regeneration are presented.  相似文献   
19.
The preparation of chemical and pharmaceutical compounds through organic reactions has always been associated with the production of environmental waste. Growth population and concerns about ecological pollution increase the interest in using heterogeneous solid catalysts with capabilities such as increasing reaction efficiency and reducing the production of by-products, as well as the ability to separate and reuse. To develop and benefit such catalysts as much as possible, in this study, using graphene oxide (GO) as a support, we succeeded in preparing a heterogeneous catalyst with a high contact surface, excellent performance, and recyclability. Graphene oxide nanosheets were synthesized according to Hummer’s method. hexamolybdate anions ([n-Bu4N]2[Mo6O19]) were placed on this support as a catalytically active site using linkers. The structure of this catalyst was confirmed by XRD, FT-IR, EDS, SEM, TEM, TGA, Raman, and nitrogen adsorption–desorption analyses, and it was used to produce pyrroles by the Paal-Knorr method. The performance of the synthesized nanocatalyst was satisfactory for all the derivatives studied. Recovery and reuse of GO@TiO2@(CH2)3N = Mo[Mo5O18] after catalytic reactions were examined. This catalyst could be quickly recovered by simple filtration and recycled ten times without significant loss of its catalytic activity.  相似文献   
20.
Redox graphene-MXene(rGO-MXene) nanocomposites were prepared by ion polymerization and used to construct a highly sensitive electrochemical sensor for baicalin(BA) detection. The synergistic effect of rGO and MXene increased the specific surface area and electron transport capacity of the electrode, and significantly enhanced the electrochemical response of BA. The cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of BA on the sensor. Under the optimal conditions, the peak current exhibited a good linear relationship with BA concentration in the range of 0. 05-10 μmol / L, and the limit of detection was as low as 28 nmol / L. The method was applied to analyze traditional Chinese medicine preparations containing baicalin, such as Qingkailing Capsule and Sanhuang Tablets with good accuracy and spiked recovery. The results were highly consistent with those of high performance liquid chromatography, providing a technical means for the rapid and sensitive detection of traditional Chinese medicine preparations. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号